Ensemble Quasi-Newton HMC

Xiao-Yong Jin and James Osborn
Argonne National Laboratory

July 23, 2018
The 36th International Symposium on Lattice Field Theory
East Lansing, MI



Reduce critical slowing down

- Part of US DOE-funded
Exascale Computing Project (ECP)

-+ Support research in lattice QCD
to prepare for exascale

- Reducing critical slowing down,
lead by Norman Christ,
is part of the USQCD's effort in ECP

- See Norman's slides
for a list of people actively involved



Outline

- Generate ensemble assisted Markov chains
- Apply Quasi-Newton HMC

- Test on 2D U(1) pure gauge theory
(work in progress)



Generate multiple Markov chains

Can we exchange information between chains?

- Use info from other chains

-+ Extra info from itself (not explored in this talk)

- Any advantage?
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Ensemble assisted Markov chains: in parallel
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- Embedding Markov chains in Markov chains



Ensemble assisted Markov chains: multi-state
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Embedding Markov chains in Markov chains




What kind of information from other chains?

- How do we generate the next state?

- Modify MD evolution
“Quasi-Newton MCMC” — Zhang & Sutton (2011)
“Ensemble precondition” — Matthews et al (2016)
“Quasi-Newton Langevin” — Simsekli et al (2016)
“Magnetic HMC” — Tripuraneni et al (2016)
“Wormhole” — Lan et al (2013)

- Modity Metropolis-Hastings
“Multi-try” — Liu, Liang, and Wong (2000)

+ Other techniques? Machine learning!!!



Quasi-Newton method for HMC Hamiltonian

- BFGS approximation of the Hessian: G's =y
Update an old approximation to a new one

w'  Gss'G s=InUU" step
yTs sTGs y = VSWU) - VSWU) yield
+ Approximate Hessian from configs of other MC
Repeatedly apply the update according to Ngiream

G =G+

-+ Use the approximate Hessian for the mass matrix
1
H=SU)+ EpTG—lp

- Note: Fourier acceleration=Local free field Hessian



Quasi-Newton method

- Avoids the slow down of the steepest decent in
narrow valleys

+ Caveat in the current study:
- The approximated Hessian is global

- We do not use the current location
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Benefits of rank-2 update (BFGS style)

- Factorizable matrix (Brodlie et al 1973)
- Initializing random momenta
G=G+ww' —zz' - G=0-whHGA -vu")
-+ Exactly invertible
-+ MD evolution

- Computing the Kkinetic energy

- vu" . uy’
G-l = (1 )G (1 )
viu—1 viu—1
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Gauge fixing of 2D U(1) lattice

- Removes exact zero modes from the real Hessian
- Frozen degrees of freedom take the same values
- We choose maximal tree gauge fixing

- Fix two more non-gauge degree of freedom
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Regulate the approximated Hessian matrix

- Remove low modes in the approximate global Hessian

- Add one more term to keep the rank-2 update

G =G

yy' (1 . s's >GSSTG
yTs sTGs/ s7Gs
- Works in practice, but not a strict bound

- Caveat:

- Mildly violates G's =y

- Still no upper bound
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Test on 2D U(1) theory (work in progress)

- Fixed p = 5.8, lattice size 32 X 32
- Serial version of the ensemble Markov chain
+ Second order Omelyan integrator (did not tune A)

- Look at the autocorrelation of the topological
susceptibility, (0?/V)

1

- Topological charge, O = — E Arg

. 27
Arg : C - (—rm, ) X

-+ Topological charge is exact integer with periodic
boundary conditions
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Acceptance tuning
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Autocorrelation of topological susceptibility
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Autocorrelation of topological susceptibility
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Summary & Outlook

- We devise an algorithm creating multiple Markov chains in parallel
Allow exchange of information while generating the Markov chains

- We modify HMC to use information from neighboring Markov chains

BEGS approximated Hessian as the mass matrix of the

Hamiltonian

Use a custom regulator for the approximated Hessian for stability

- We still need more tuning and testing (parameters / observables)

- Ways to improve the algorithm

- Exploit the ensemble of Markov chains (multi-scale?)

- Other method for constructing the mass matrix

- Use other information / observables to augment

- Machine learning!

/ Metropolis
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